

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0340 of 13 December 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Mungo Injection system MIT600RE for concrete

Bonded anchor for use in concrete

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Mungo 2

22 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-09/0340 issued on 20 October 2014

European Technical Assessment ETA-09/0340

Page 2 of 22 | 13 December 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z77898.16 8.06.01-271/16

European Technical Assessment ETA-09/0340

Page 3 of 22 | 13 December 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Mungo Injection system MIT600RE for concrete" is a bonded anchor consisting of a cartridge with injection mortar MIT600RE and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply..

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z77898.16 8.06.01-271/16

European Technical Assessment ETA-09/0340

Page 4 of 22 | 13 December 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

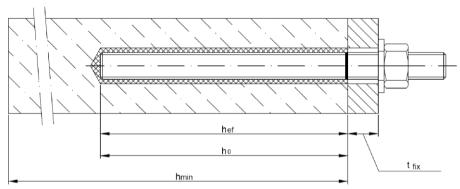
In accordance with guideline for European technical approval ETAG 001, April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

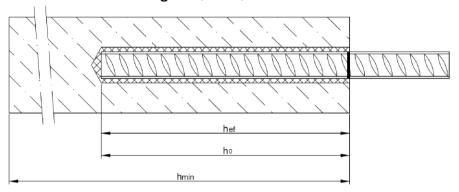
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

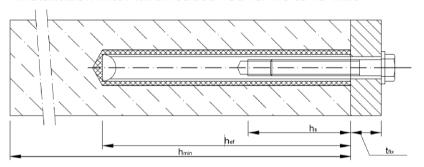
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 December 2016 by Deutsches Institut für Bautechnik


Andreas Kummerow p.p. Head of Department

beglaubigt: Baderschneider


Z77898.16 8.06.01-271/16

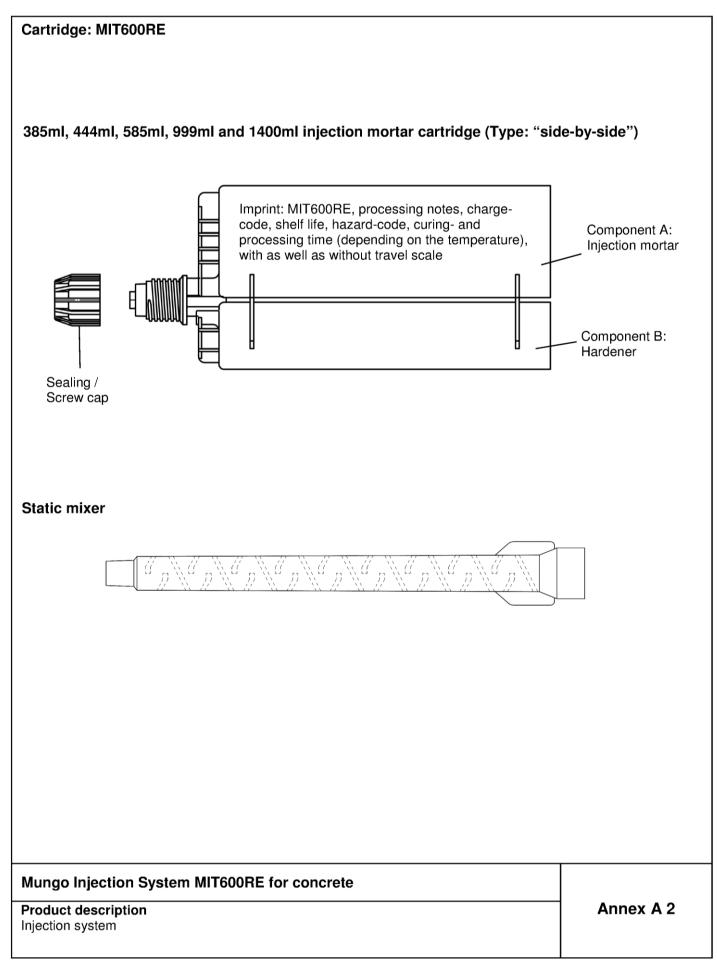

Installation threaded rod M8 to M30

Installation reinforcing bar Ø8 to Ø32

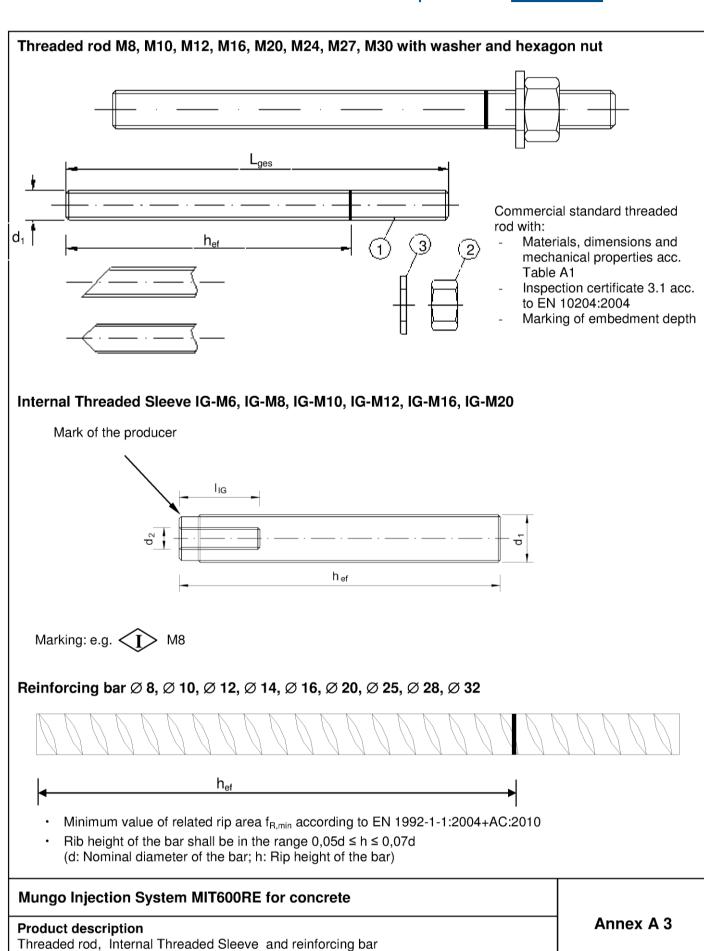
Installation internal threaded rod IG-M6 to IG-M20

d_f = diameter of clearance hole in the fixture

 t_{fix} = thickness of fixture


h_{ef} = effective anchorage depth

 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

Mungo Injection System MIT600RE for concrete	
Product description Installed condition	Annex A 1

	Tee							
Designation 5 100 4040 4	Material							
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999 or Steel, hot-dip galvanised ≥ 40 µm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009								
Oteel, not dip garvanised 2 40 µm acc. to Elvic	Steel, EN 10087:1998 or EN 10263:200							
Anchor rod	Property class 4.6, 4.8, 5.8, 8.8, EN 199							
	A ₅ > 8% fracture elongation							
	Steel acc. to EN 10087:1998 or EN 102							
Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 and 4.8 rd							
	Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS							
Washer, EN ISO 887:2006, EN ISO 7089:2000,	Froperty class 8 (for class 8.8 fod) EN 18	50 696-2.2012						
EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised							
Internally threaded sleeve	Steel, zinc plated							
Stainless steel								
	Material 1.4401 / 1.4404 / 1.4571, EN 10							
Anchor rod	> M24: Property class 50 EN ISO 3506-							
	≤ M24: Property class 70 EN ISO 3506-1:2009							
	A ₅ > 8% fracture elongation Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005,							
Hexagon nut, EN ISO 4032:2012 > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:								
	≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009							
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN	10088-1:2005						
Internally threaded sleeve	Stainless steel: 1.4401 / 1.4404 / 1.4571	, EN 10088-1:2005						
High corrosion resistance steel								
	Material 1.4529 / 1.4565, EN 10088-1:20							
Anchor rod	> M24: Property class 50 EN ISO 3506-							
71101101100	≤ M24: Property class 70 EN ISO 3506-	1:2009						
	A ₅ > 8% fracture elongation Material 1.4529 / 1.4565 EN 10088-1:20	05						
Hexagon nut, EN ISO 4032:2012	> M24: Property class 50 (for class 50 rd							
110X4g0111141, E1V100 4002.2012	≤ M24: Property class 70 (for class 70 ro	,						
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20							
Reinforcing bars								
	B							
Rebar	Bars and de-coiled rods class B or C	11000 1 1/NA-0010						
EN 1992-1-1:2004+AC:2010, Annex C		1 1992-1-1/INA:2013						
	f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1 1992-1-1/NA:2013						
Mungo Injection System MIT600RE for co	ncrete	Annex A 4						
Product description Materials		T.IIIVA A T						

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M12 to M30. Rebar Ø12 to Ø32. IG-M8 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
 II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer for seismic loading are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded sleeve.

Mungo Injection System MIT600RE for concrete	
Intended Use Specifications	Annex B 1

778175 16 8.06.01-271/16

Table B1: Installation parameters for threaded rod										
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	М 30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35	
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effective affortage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360	
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] ≤	9	12	14	18	22	26	30	33	
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200	
Minimum thickness of h_{min} [mm] h_{ef} + 30 mm h_{ef} = 100 mm			h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150	
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150	

¹⁾ For larger clearance hole see TR029 section 1.1

Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter d ₀ [mm] =		12	14	16	18	20	24	32	35	40
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective afficiliting deptif	$h_{ef,max} [mm] =$		120	144	168	192	240	300	336	384
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm				h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Installation parameters for internally threaded sleeve Table B3:

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of sleeve	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of sleeve ²⁾	$d_1 = d_{nom} [mm] =$	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	24	28	35
Effective anabarage depth	h _{ef,min} [mm] =	70	70	80	90	96	120
Effective anchorage depth	h _{ef,max} [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] =	7	9	12	14	18	22
Installation torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length Min/max	I _{IG} [mm] =	8/20	8/20	10/20	12/30	16/40	20/50
Minimum thickness of member	h _{min} [mm]		ef mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	50	60	80	100	120	135
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	135

¹⁾ For larger clearance hole see TR029 section 1.1 ²⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Mungo Injection System MIT600RE for concrete	
Intended Use Installation parameters	Annex B 2

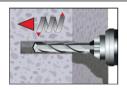
Steel brush

Table B4: Parameter cleaning and setting tools

Threaded Rod	Rebar	Internal Threaded Sleeve	d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[No.]
М8			10	12	10,5	
M10	8	IG-M6	12	14	12,5	
M12	10	IG-M8	14	16	14,5	No No
	12		16	18	16,5	piston plug required
M16	14	IG-M10	18	20	18,5	'
	16		20	22	20,5	
M20	20	IG-M12	24	26	24,5	# 24
M24		IG-M16	28	30	28,5	# 28
M27	25		32	34	32,5	# 32
M30	28	IG-M20	35	37	35,5	# 35
	32		40	41,5	40,5	# 38

MAC: Hand pump (volume 750 ml)
Drill bit diameter (d₀): 10 mm to 20 mm

CAC: Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm


Piston plug for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 40 mm

Mungo Injection System MIT600RE for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2 or B3). In case of aborted drill hole: the drill hole shall be filled with mortar

or

or

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (CAC) (min. 6 bar) or a hand pump (MAC) (Annex B 3) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

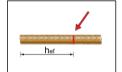
MAC: The hand-pump¹⁾ can **only** be used for anchor sizes in uncracked concrete, either up to bore hole diameter 20mm or embedment depth up to 240mm.

CAC: Compressed air (min. 6 bar, oil-free) can be used for all sizes in cracked and

CAC: Compressed air (min. 6 bar, oil-free) can be used for all sizes in cracked and uncracked concrete.

2b. Check brush diameter (Table B4) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B4).

2c. Finally blow the hole clean again with compressed air (CAC) (min. 6 bar) or a hand pump (MAC) (Annex B 3) a minimum of two times. If the bore hole ground is not reached an extension shall be used.


MAC: The hand-pump¹⁾ can **only** be used for anchor sizes in uncracked concrete, either up to bore hole diameter 20mm or embedment depth up to 240mm.

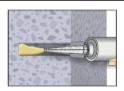
CAC: Compressed air (min. 6 bar, oil-free) can be used for all sizes in cracked and uncracked concrete.

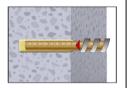
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

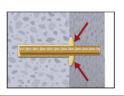
¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 240 mm also in cracked concrete with hand-pump.

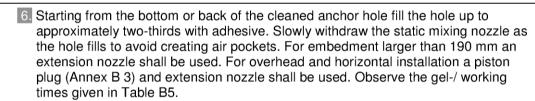
- 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.
 - For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.

Mungo Injection System MIT600RE for concrete

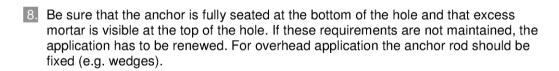

Intended Use

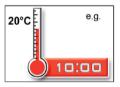

Installation instructions

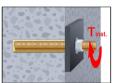

Annex B 4



Installation instructions (continuation)







7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

10. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench.

Table B5: Minimum curing time

Concrete temperature			Gelling-working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete				
+ 5 °C	to	+ 9 °C	120 min	50 h	100 h				
+ 10 °C	to	+ 19 °C	90 min	30 h	60 h				
+ 20 °C	to	+ 29 °C	30 min	10 h	20 h				
+ 30 °C	to	+ 39 °C	20 min	6 h	12 h				
+ 4	40 °C	;	12 min	8 h					
Cartridge	temp	perature	+5°C to +40°C						

Mungo Injection System MIT600RE for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 5

Anchor size threaded	d rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension	resistance	$N_{Rk,s}$ = $N_{Rk,s,C1}$ = $N_{Rk,s,C2}$	[kN]				A _s •	f_{uk}			
Combined pull-out a	nd concrete cone failur										
Characteristic bond re	sistance in non-cracked	concrete C20/									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II: 60°C/43°C	dry and wet concrete flooded bore hole	τ _{Rk,ucr}	[N/mm²] [N/mm²]	9,5 9,5	9,5 9,5	9,0	8,5 8,5	8,0 7,5	7,5 7,0	7,5 6,5	7,5 6,0
Temperature range III:		τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Characteristic bond re	sistance in cracked conc	rete C20/25		•		•	•		•	•	
		$ au_{Rk,cr}$	[N/mm ²]			7,5	6,5	6,0	5,5	5,5	5,5
_	dry and wet concrete	τ _{Rk,C1}	[N/mm²]			7,1	6,2	5,7	5,5	5,5	5,5
Temperature range I: 40°C/24°C		τ _{Rk,C2}	[N/mm²]		-	2,4	2,2			Determined	
10°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²] [N/mm²]	-	ŀ	7,5 7,1	6,0 5,8	5,0 4,8	4,5 4,5	4,0 4.0	4,0 4.0
	nooded bore note	τ _{Rk,C1} τ _{Rk,C2}	[N/mm²]			2,4	2,1		, -	Determined	,
		τ _{Rk,cr}	[N/mm²]	1	ľ	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	τ _{Rk,C1}	[N/mm²]			4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II:		$\tau_{Rk,C2}$	[N/mm ²]		ormance	1,4	1,4			Determined	<u> </u>
60°C/43°C	flooded book balo	$ au_{ m Rk,cr}$	[N/mm²]	Determin	ied (NPD)	4,5	4,0	3,5	3,5	3,5	3,5
	flooded bore hole	τ _{Rk,C1}	[N/mm²] [N/mm²]	-	-	4,3 1,4	3,8 1,4	3,4	3,5	3,5 Determined	3,5
		τ _{Rk,C2} τ _{Rk,cr}	[N/mm²]	1	-	4,0	3,5	3,0	3,0	3,0	3,0
Temperature range III: 72°C/43°C	dry and wet concrete	τ _{Rk,C1}	[N/mm²]	1		3,9	3,4	3,0	3,0	3,0	3,0
		T _{Rk,C2}	[N/mm²]	1		1,3	1,2			Determined	
		$ au_{Rk,cr}$	[N/mm ²]]		4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{Rk,C1}$	[N/mm ²]			3,9	3,4	3,0	3,0	3,0	3,0
		τ _{Rk,C2}	[N/mm²]			1,3	1,2		rformance	Determined	d (NPD)
		C25					1,0 1,0				
ncreasing factors for o	concrete	C35					1,0				
Ψο		C40					1,0				
		C45					1,0				
Factor according to	In	C50)/60 T				1,1				
CEN/TS 1992-4-5	Non-cracked concrete	k ₈	[-]				10	,1			
Section 6.2.2.3	Cracked concrete		.,				7,	2			
Concrete cone failure	е										
Factor according to	Non-cracked concrete	k _{ucr}	[-]				10	,1			
CEN/TS 1992-4-5 Section 6.2.3.1	Cracked concrete	k _{cr}	[-]				7,	2			
Edge distance	Gracinos de Hereito	C _{cr,N}	[mm]				1,5				
Axial distance		S _{cr,N}	[mm]				3,0				
Splitting failure		0.11.1									
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
							(.	h	1		
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]				$2 \cdot h_{ef} = 2$	$5-\frac{1}{h}$			
	h/h _{ef} ≤ 1,3						2,4	h.	<u>'</u>		
Axial distance	11/11 _{ef} = 1,3	S _{cr.sp}	[mm]				2,4 2 c				
nstallation safety facto	or				1,	2		1,50		,4	
dry and wet concrete)		γ2 = γinst	[-]		1,				'	,4	
nstallation safety facto	or (flooded bore hole)	$\gamma_2 = \gamma_{inst}$	[-]				1,	4			
Mungo Injectio	on System MIT60	ORE for c	oncrete								
									_	_	
Performances									Λnr	าex C	1

Table C2: Characterist seismic action						-	si-stati	c actio	on and	l
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure without lever arm						•				
	$V_{Rk,s}$	[kN]				0,50 •	$A_s \cdot f_{uk}$			
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	NF	DD	0	,44 • A _s •	f _{uk}	0	,40 • A _s • 1	uk
	$V_{Rk,s,C2}$	[kN]	INF	-0	0,40 •	$A_s \cdot f_{uk}$	No Perf	ormance l	Determine	d (NPD)
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]				1.2 • \	N _{el} ∙ f _{uk}			
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No Porf	ormance	Determine	d (NDD)		
	M ⁰ _{Rk,s,C2}	[Nm]			110 1 611	Office	Determine	d (N D)		
Concrete pry-out failure										
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]				2	,0			
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0			
Concrete edge failure	<u> </u>	•								
Effective length of anchor	I _f	[mm]				l _f = min(h	n _{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0			

Mungo Injection System MIT600RE for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1 and C2)	Annex C 2

	haracteristic value atic and quasi-sta		on ioa	ias tor i	nternal	ınread	ea siee	ves und	aer
Anchor size internally	threaded sleeves			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure						•			
Characteristic tension re Steel, strength class 5.8		N _{Rk,s}	[kN]	10	17	29	42	76	123
Partial safety factor		γMs,N	[-]			1	,5		
Characteristic tension re Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial safety factor		γMs,N	[-]			1	,5		
Characteristic tension re Stainless Steel A4 Strength class 70	esistance,	N _{Rk,s}	[kN]	14	26	41	59	110	172
Partial safety factor		γ _{Ms,N}	[-]			1,	87		
Combined pull-out and	d concrete cone failure								
Characteristic bond resi	stance in non-cracked concre	ete C20/25							
Temperature range I:	dry and wet concrete	Τ	[N/m	15	15	14	13	12	12
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	m²]	14	13	10	9,5	8,5	7,0
Temperature range II:	dry and wet concrete	τ	[N/m	9,5	9,0	8,5	8,0	7,5	7,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	m²]	9,5	9,0	8,5	7,5	7,0	6,0
Temperature range III:	dry and wet concrete		[N/m	8,5	8,0	7,5	7,0	7,0	6,5
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	m²]	8,5	8,0	7,5	7,0	6,0	5,5
Characteristic bond resi	stance in cracked concrete C	20/25							
Temperature range I:	dry and wet concrete		[N/m		7,5	6,5	6,0	5,5	5,5
40°C/24°C	flooded bore hole	τ _{Rk,cr}	m²]] [7,5	6,0	5,0	4,5	4,0
Temperature range II:	dry and wet concrete		[N/m	No Performance	4,5	4,0	3,5	3,5	3,5
60°C/43°C	flooded bore hole	τ _{Rk,cr}	m²]	Determined (NPD)	4,5	4,0	3,5	3,5	3,5
Temperature range III:	dry and wet concrete		[N/m	(141 0)	4,0	3,5	3,0	3,0	3,0
72°C/43°C	flooded bore hole	τ _{Rk,cr}	m²]		4,0	3,5	3,0	3,0	3,0
		C25/	′30			1,	02		
		C30/	′37			1,	04		
Increasing factors for co	oncrete	C35/	45			1,	07		
ψ_{c}		C40/	′50			1,	08		
		C45/	55			1,	09		
		C50/	60			1,	10		
Factor according to	Non-cracked concrete	l.				10	0,1		
CEN/TS 1992-4-5 Section 6.2.2.3	Cracked concrete	─ k ₈	[-]			7	,2		
Concrete cone failure							,_		
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	k _{ucr}	[-]			10),1		
Section 6.2.3.1	Cracked concrete	k _{cr}	[-]			7	,2		
Edge distance		C _{cr,N}	[mm]				5 h _{ef}		
Axial distance		S _{cr,N}	[mm]) h _{ef}		
Splitting failure		-01,14				-,-			
	h/h _{ef} ≥ 2,0					1.0) h _{ef}		
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$,5-\frac{h}{h_{ef}}$		
	h/h _{ef} ≤ 1,3					2,4	l h _{ef}		
Axial distance	1	S _{cr,sp}	[mm]				cr,sp		
Installation safety factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]		1,2			1,4	

Mungo Injection System MIT600RE for concrete Performances Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action Annex C 3

Table C4:	Characteristic values of shear loads for internal threaded sleeves under
	static and quasi-static action

Anchor size for internally threaded	sleeves		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm								
Characteristic shear resistance, Steel, strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21	38	61
Partial safety factor	γMs,V	[-]			1,2	5		
Characteristic shear resistance, Steel, strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	34	60	98
Partial safety factor	γMs,V	[-]			1,2	5		
Characteristic shear resistance, Stainless Steel A4 Strength class 70	$V_{Rk,s}$	[kN]	7	13	20	30	55	86
Partial safety factor	γMs,V	[-]			1,5	6		
Steel failure with lever arm								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial safety factor	γ _{Ms,V}	[-]			1,2	5		
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial safety factor	γ _{Ms,V}	[-]			1,2	5		
Characteristic bending moment, Stainless Steel A4 Strength class 70	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	454
Partial safety factor	γMs,V	[-]			1,5	6		
Concrete pry-out failure								
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k_3 in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]			2,0)		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0)		
Concrete edge failure								
Effective length of anchor	l _f	[mm]			$I_f = min(h_e)$; 8 d _{nom})		
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	20	24	30
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0)		
	<u> </u>							

Mungo Injection	System	MIT600RE	for concrete
-----------------	--------	----------	--------------

Performances

Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action

Annex C 4

	Characteristic va seismic action (p					er sta	itic, q	ıuasi-	statio	actio	on an	d
Anchor size reinford	ing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 3
Steel failure												
Characteristic tension	resistance	N _{Rk,s}	[kN]					A _s • f _{uk}				
Combined pull-out a	and concrete cone failure											
· · · · · · · · · · · · · · · · · · ·	esistance in non-cracked co	ncrete C20	/25									
Temperature range I:	1	$\tau_{\rm Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
Characteristic bond re	esistance in cracked concre	te C20/25										
		$ au_{Rk,cr}$	[N/mm²]			7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]]		7,1	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]			7,5	6,5	6,0	5,0	4,5	4,0	4,0
	nooded bore note	τ _{Rk,C1}	[N/mm ²]]		7,1	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	N- D		4,5	4,0	4,0	3,5	3,5	3,5	3,5
	:	τ _{Rk,C1}	[N/mm²]	No Perfo		4,3	3,7	3,8	3,3	3,5	3,5	3,
60°C/43°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	(NF	PD)	4,5	4,0	4,0	3,5	3,5	3,5	3,0
		τ _{Rk,C1}	[N/mm²]	-		4,3	3,7	3,8	3,3	3,5	3,5	3,0
Temperature range III: 72°C/43°C	dry and wet concrete		+	-		4,0 3,9	3,5 3,2	3,5 3,3	3,0 2,9	3,0	3,0	3,0
Temperature range II: 60°C/43°C Temperature range III: 72°C/43°C	l:		+	-		4,0	3,5	3,5	3,0	3,0	3,0	3,0
, 2 3, 13 3	ure range III: $ au_{Rk,C1}$ [N/mm ²]	-		3,9	3,2	3,3	2,9	3,0	3,0	3,0		
			25/30			0,0	0,2	1,02	_,0	0,0	0,0	0,0
			30/37					1,04				
Increasing factors for	concrete	C3	35/45					1,07				
Ψc		C4	0/50					1,08				
		C4	5/55					1,09				
		C5	50/60					1,10				
Factor according to CEN/TS 1992-4-5	Non-cracked concrete	$\frac{1}{k_8}$	[-]					10,1				
Section 6.2.2.3	Cracked concrete	1/8	1-1					7,2				
Concrete cone failur	re											
Factor according to	Non-cracked concrete	k _{ucr}	[-]					10,1				
CEN/TS 1992-4-5 Section 6.2.3.1	Cracked concrete	k _{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure		•										
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{c}$	_{ef} 2,5 -	$\frac{h}{h_{ef}}$			
	h/h _{ef} ≤ 1,3	+						2,4 h _{ef}	9 /			
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
	tor (dry and wet concrete)	$\gamma_2 = \gamma_{inst}$	[-]			1,2		,-,0		1	,4	
Installation safety fact	tor (flooded bore hole)	$\gamma_2 = \gamma_{inst}$	[-]					1,4				
Performances Characteristic valu	on System MIT600 les of tension loads under			action a	nd seis	mic acti	on		-	Anne	ex C 5	;

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											•
	$V_{Rk,s}$	[kN]				0,	50 • A _s •	f _{uk}			
Characteristic shear resistance	$V_{Rk,s,\mathtt{C1}}$	[kN]	Deter	ormance mined PD)			0,	44 • A _s •	f _{uk}		
Steel failure with lever arm											
Characteristic bending moment	M ^o _{Rk,s}	[Nm]				1.	2 • W _{el} •	f_{uk}			
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]			No F	Performar	nce Dete	rmined (f	NPD)		
Concrete pry-out failure			•								
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]					2,0				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
Concrete edge failure		·									
Effective length of anchor	I _f	[mm]				l _f = n	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		•			1,0				•

Mungo Injection System MIT600RE for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 6

Anchor size thread	ded rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked conc	rete C20/25 unde	r static and qua	si-statio	action		•		•			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035	
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043	
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043	
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16	
Cracked concrete	C20/25 under sta	tic, quasi-static	and sei	smic C	1 action	1					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]			0,032	0,037	0,042	0,048	0,053	0,05	
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	1		0,210	0,210	0,210	0,210	0,210	0,21	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	No Perfe	ormance	0,037	0,043	0,049	0,055	0,061	0,06	
60°C/43°C	δ _{N∞} -factor	[mm/(N/mm²)]	Determin	ed (NPD)	0,240	0,240	0,240	0,240	0,240	0,24	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,06	
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]			0,240	0,240	0,240	0,240	0,240	0,24	
Cracked concrete	C20/25 under sei	smic C2 action									
Temperature range I:	$\delta_{N,seis(DLS)}$ -factor	[mm/(N/mm²)]			0,03	0,05					
40°C/24°C	$\delta_{N,seis(ULS)}$ -factor	[mm/(N/mm²)]	No Performand Determined (NPD)		0,06	0,09		No Performance Determined (
Temperature range II:		[mm/(N/mm²)]	No Performati Determined (NPD)		0,03	0,05					
60°C/43°C		[mm/(N/mm²)]			0.06	0.00	No Perf	ormance I	Determine	d (NPL	
	$0^{\circ}\text{C}/43^{\circ}\text{C}$ $\delta_{\text{N,seis}(\text{ULS})}$ -factor [mm/(N/mirature range III: $\delta_{\text{N,seis}(\text{DLS})}$ -factor [mm/(N/mirature range III: $\delta_{\text{N,seis}}$	[I (N	` '							
Temperature range III:		[mm/(N/mm²)]	_ (Ni	PD)	0,03	0,05					
Temperature range III: $72^{\circ}\text{C}/43^{\circ}\text{C}$ $^{1)} \text{ Calculation of the} \\ \delta_{N0} = \delta_{N0}\text{-factor} \\ \delta_{N\infty} = \delta_{N\infty}\text{-factor}$	$\begin{array}{ccc} \delta_{\text{N,seis}(\text{DLS})} \text{ -factor} \\ \delta_{\text{N,seis}(\text{ULS})} \text{ -factor} \\ \\ \text{e displacement} \\ \tau; & \delta_{\text{N,seis}} \end{array}$	1 1	ctor · τ;	,	0,03		tension				
$72^{\circ}\text{C}/43^{\circ}\text{C}$ $^{1)} \text{ Calculation of the} \\ \delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \\ \delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor}$	$\begin{array}{ccc} \delta_{\text{N,seis}(\text{DLS})} \text{ -factor} \\ \delta_{\text{N,seis}(\text{ULS})} \text{ -factor} \\ \\ \text{e displacement} \\ \tau; & \delta_{\text{N,seis}} \end{array}$	$\begin{aligned} & & & & & & & & & & \\ & & & & & & & & $	ctor · τ; ctor · τ;	τ: acti	0,03 0,06 on bond	0,05 0,09 stress for	rtension				
$72^{\circ}\text{C}/43^{\circ}\text{C}$ $^{1)} \text{ Calculation of the} \\ \delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \\ \delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor}$	$\begin{array}{ccc} \delta_{\text{N,seis(DLS)}} \text{ -factor} \\ \delta_{\text{N,seis(ULS)}} \text{ -factor} \\ \text{e displacement} \\ \cdot \tau; & \delta_{\text{N,seis}} \\ \cdot \tau; & \delta_{\text{N,seis}} \\ \text{splacements L} \end{array}$	$\begin{aligned} & & & & & & & & & & \\ & & & & & & & & $	ctor · τ; ctor · τ;	τ: acti	0,03 0,06 on bond	0,05 0,09 stress for	tension	M24	M 27	M 30	
$72^{\circ}\text{C}/43^{\circ}\text{C}$ 1) Calculation of the $\delta_{\text{N0}} = \delta_{\text{N0}}$ -factor $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}$ -factor Table C8: Di	$\begin{array}{ccc} \delta_{N,seis(DLS)} \text{ -factor} \\ \delta_{N,seis(ULS)} \text{ -factor} \\ \text{e displacement} \\ \tau; & \delta_{N,seis} \\ \tau; & \delta_{N,seis} \\ \text{splacements L} \\ \text{ded rod} \\ \end{array}$	$\begin{array}{c} [\text{mm/(N/mm^2)}] \\ [\text{mm/(N/mm^2)}] \\ \\ [\text{DLS}) = \delta_{N,\text{seis(DLS)}}\text{-fa} \\ \\ (\text{ULS}) = \delta_{N,\text{seis(ULS)}}\text{-fa} \\ \\ \\ \text{Inder shear I} \\ \end{array}$	ctor · τ; ctor · τ; oad¹⁾ (1	τ: action	0,03 0,06 on bond ed rod	0,05 0,09 stress for)	M 20		M 27	M 30	
$72^{\circ}\text{C}/43^{\circ}\text{C}$ 1) Calculation of the $\delta_{\text{N0}} = \delta_{\text{N0}}$ -factor $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and of	$\begin{array}{ccc} \delta_{N,seis(DLS)} \text{ -factor} \\ \delta_{N,seis(ULS)} \text{ -factor} \\ \text{e displacement} \\ \tau; & \delta_{N,seis} \\ \tau; & \delta_{N,seis} \\ \text{splacements L} \\ \text{ded rod} \\ \end{array}$	$\begin{array}{c} [\text{mm/(N/mm^2)}] \\ [\text{mm/(N/mm^2)}] \\ \\ [\text{DLS}) = \delta_{N,\text{seis(DLS)}}\text{-fa} \\ \\ (\text{ULS}) = \delta_{N,\text{seis(ULS)}}\text{-fa} \\ \\ \\ \text{Inder shear I} \\ \end{array}$	ctor · τ; ctor · τ; oad¹⁾ (1	τ: action	0,03 0,06 on bond ed rod	0,05 0,09 stress for)	M 20		M 27	M 30	
$72^{\circ}\text{C}/43^{\circ}\text{C}$ 1) Calculation of the $\delta_{\text{N0}} = \delta_{\text{N0}}$ -factor $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}$ -factor Table C8: Di Anchor size thread Non-cracked and o All temperature	$\begin{array}{ccc} \delta_{N,seis(DLS)} \text{ -factor} \\ \delta_{N,seis(ULS)} \text{ -factor} \\ \text{e displacement} \\ \cdot \tau; & \delta_{N,seis} \\ \cdot \tau; & \delta_{N,seis} \\ \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)} - fa$ $(ULS) = \delta_{N,seis(ULS)} - fa$ $Inder shear I$ $C20/25 under s$	ctor · τ; ctor · τ; oad ¹⁾ (t M 8 tatic, qu	τ: action	0,03 0,06 on bond ed rod M 12 tic and	0,05 0,09 stress for M 16 seismic	M 20 C1 acti	ion			
1) Calculation of the δ _{N0} = δ _{N0} -factor δ _{N∞} = δ _{N∞} -factor Table C8: Di Anchor size threac Non-cracked and c All temperature ranges	$\begin{array}{ccc} \delta_{N,seis(DLS)} \text{ -factor} \\ \delta_{N,seis(ULS)} \text{ -factor} \\ \text{e displacement} \\ \tau; & \delta_{N,seis} \\ \tau; & \delta_{N,seis} \\ \text{splacements L} \\ \text{ded rod} \\ \text{cracked concrete} \\ \hline \delta_{V0}\text{ -factor} \\ \hline \delta_{V\infty}\text{ -factor} \\ \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)} - fa$ $(ULS) = \delta_{N,seis(ULS)} - fa$ $Inder shear I$ $C20/25 under s$ $[mm/(kN)]$ $[mm/(kN)]$	ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 tatic, qu	τ: action thread M 10 masi-state 0,06	0,03 0,06 on bond ed rod M 12 tic and	0,05 0,09 stress for M 16 seismic 0,04	M 20 C1 acti	i on	0,03	0,03	
1) Calculation of the δ _{N0} = δ _{N0} -factor δ _{N∞} = δ _{N∞} -factor Table C8: Di Anchor size threac Non-cracked and c All temperature ranges Cracked concrete	$\begin{array}{ccc} \delta_{N,seis(DLS)} \text{ -factor} \\ \delta_{N,seis(ULS)} \text{ -factor} \\ \text{e displacement} \\ \tau; & \delta_{N,seis} \\ \tau; & \delta_{N,seis} \\ \text{splacements L} \\ \text{ded rod} \\ \text{cracked concrete} \\ \hline \delta_{V0}\text{ -factor} \\ \hline \delta_{V\infty}\text{ -factor} \\ \hline \textbf{C20/25 under seis} \\ \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)} - fa$ $(ULS) = \delta_{N,seis(ULS)} - fa$ $Inder shear I$ $C20/25 under s$ $[mm/(kN)]$ $[mm/(kN)]$ $[mm/(kN)]$ smic C2 action	ctor · τ; ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: action thread M 10 lasi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for M 16 seismic 0,04 0,06	M 20 C1 acti	i on	0,03	0,03	
1) Calculation of the δ _{N0} = δ _{N0} -factor δ _{N∞} = δ _{N∞} -factor Table C8: Di Anchor size thread Non-cracked and d All temperature ranges Cracked concrete All temperature	$\begin{array}{cccc} \delta_{N,seis(DLS)} \text{ -factor} \\ \delta_{N,seis(ULS)} \text{ -factor} \\ \text{e displacement} \\ \tau; & \delta_{N,seis} \\ \tau; & \delta_{N,seis} \\ \text{splacements L} \\ \text{ded rod} \\ \text{cracked concrete} \\ \delta_{V0} \text{ -factor} \\ \delta_{V_{\infty}} \text{ -factor} \\ \text{C20/25 under seis} \\ \delta_{V,seis(DLS)} \text{ -factor} \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)} - fa$ $(ULS) = \delta_{N,seis(ULS)} - fa$ $Inder shear I$ $C20/25 under s$ $[mm/(kN)]$ $[mm/(kN)]$ $smic C2 action$ $[mm/kN]$	ctor · τ; ctor · τ; oad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: action thread M 10 lasi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for M 16 seismic 0,04 0,06	M 20 C1 acti 0,04 0,06	0,03 0,05	0,03	0,03	
$72^{\circ}\text{C}/43^{\circ}\text{C}$ $^{1)}\text{ Calculation of the }\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor }\delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor }$ Table C8: Di $\text{Anchor size thread } \text{Non-cracked and } \text{Color } \text{Calculation of the }\delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor } \text{Calculation of the }\delta_{\text{V0}} = \delta_{\text{V}\infty}\text{-factor }\delta_{\text{V},\text{seis}(\text{DLS})} = \delta_{\text{V},\text{seis}}$	$\begin{array}{c c} \delta_{N,seis(DLS)} \text{ -factor} \\ \delta_{N,seis(ULS)} \text{ -factor} \\ \text{e displacement} \\ \tau; & \delta_{N,seis} \\ \tau; & \delta_{N,seis} \\ \text{splacements L} \\ \text{ded rod} \\ \text{cracked concrete} \\ \hline \delta_{V0} \text{ -factor} \\ \hline \delta_{V_{\infty}} \text{ -factor} \\ \hline \mathbf{C20/25 \ under \ seis} \\ \hline \delta_{V,seis(DLS)} \text{ -factor} \\ \hline \delta_{V,seis(ULS)} \text{ -factor} \\ \text{e displacement} \\ \mathbf{V}; \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)} - fa$ $(ULS) = \delta_{N,seis(ULS)} - fa$ $Inder shear I$ $C20/25 under s$ $[mm/(kN)]$ $[mm/(kN)]$ $[mm/(kN)]$ smic C2 action	ctor · τ; ctor · τ; oad 1) (1 M 8 tatic, qu 0,06 0,09	τ: action thread M 10 masi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for M 16 seismic 0,04 0,06	M 20 C1 acti 0,04 0,06	0,03 0,05	0,03	0,03	
$72^{\circ}\text{C}/43^{\circ}\text{C}$ $^{1)}\text{ Calculation of the } \delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor } \delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor } \delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor } \delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor } \delta_{\text{N}\infty}$ Table C8: Di $\text{Anchor size thread } \delta_{\text{N}\infty}$ $\text{All temperature } \delta_{\text{N}\infty}$ $\text{Cracked concrete } \delta_{\text{II}}$ $\text{All temperature } \delta_{\text{II}}$ $\text{Calculation of the } \delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor } \delta_{\text{V},\text{seis}(\text{DLS})} = \delta_{\text{V},\text{seis}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $(DLS) = \delta_{N,seis(DLS)} - fa$ $(ULS) = \delta_{N,seis(ULS)} - fa$ $Inder shear I$ $[mm/(kN)]$ $[mm/(kN)]$ $[mm/(kN)]$ $[mm/kN]$ $[mm/kN]$ $V: action shear$	ctor · τ; ctor · τ; ctor · τ; oad¹) (t M 8 tatic, qu 0,06 0,09 No Perfr Deter (Ni	τ: action thread M 10 lasi-state 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and 0,05 0,08	0,05 0,09 stress for M 16 seismic 0,04 0,06	M 20 C1 acti 0,04 0,06	0,03 0,05	0,03	0,03	

Table C9: Dis	splacements	under tension	load ¹⁾ (ir	nternally	threade	d sleeve))	
Anchor size interna	ally threaded s	leeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked conci	rete C20/25 und	der static and quas	si-static ac	tion				
Temperature range I:	0,013	0,015	0,020	0,024	0,029	0,035		
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114	0,140
Temperature range II: 60°C/43°C	δ_{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	0,043
	δ _{N∞} -factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	0,161
Cracked concrete (C20/25 under s	tatic and quasi-sta	tic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]		0,032	0,037	0,042	0,048	0,058
40°C/24°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]		0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	No Performance	0,037	0,043	0,049	0,055	0,067
60°C/43°C	δ _{N∞} -factor	[mm/(N/mm²)]	Determined (NPD)	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]]	0,037	0,043	0,049	0,055	0,067
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]		0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \tau;$

Table C10: Displacements under shear load¹⁾ (internally threaded sleeve)

Anchor size inte	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Non-cracked and cracked concrete C20/25 under static and quasi-static action								
All temperature ranges	δ _{v0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$;

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-factor} \quad V;$

Mungo Injection System MIT600RE for concrete	
Performances Displacements (internally threaded sleeve)	Annex C 8

Table C11: D	isplacen	nents under t	tensio	n load	^{l)} (reba	r)					
Anchor size reinfo	orcing bar		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete	C20/25 ui	nder static, qua	si-statio	and se	eismic C	1 actio	n				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]			0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	No Performance Determined (NPD)		0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]			0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III: 72°C/43°C	δ_{N0} -factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm²)]			0,240	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C12: Displacement under shear load 1) (rebar)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static, quasi-static and seismic C1 action											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$
V: action shear load

Mungo Injection System MIT600RE for concrete	
Performances	Annex C 9
Displacements (rebar)	

8.06.01-271/16 Z78175.16